A completely normal title about scientific research, not stolen from another conference

Shawn Zimmerman¹, Shannon Sullivan^{1,2} and David Thomas². ¹Science Division, Lyon College, Batesville, AR 72501, USA. ²Currently at Vanderbilt University, Interdisciplinary Biomedical Research Program, Nashville, TN 37235, USA.

The oxygen in the present-day atmosphere was produced by cyanobacteria and similar organisms 2.5-3.5 billion years ago. Early photosynthetic organisms evolved in an atmosphere rich in CO₂ and poor in O₂. We are currently investigating the tolerance of several cyanobacterial species to very high (>20%) concentrations of atmospheric CO₂. Cultures of *Synechococcus*, *Synechocystis*, *Plectonema boryanum* and *Anabaena* were grown in liquid culture and bubbled with CO₂-enriched air. Culture growth was monitored by measuring optical density at 750 nm. Damage to photosystems I and II was monitored by redox-dependent differential absorbance (delta A₈₃₀ nm) and variable fluorescence (Fv/FM), respectively. *Synechococcus*, *Plectonema*, and *Anabaena* tolerated CO₂ concentrations up to 100% when the CO₂ content was gradually increased from ambient by 10-15% per day. However, Synechocystis did not tolerate high CO₂. Strains that were sensitive to high CO₂ were also sensitive to low initial pH (pH 5-6), indicating that the formation of carbonic acid was partially responsible for the inhibited growth in high CO₂ environments. Cyanobacteria that were sensitive to high CO₂ environments (e.g., *Synechocystis*) exhibited rapid inhibition of photosystem II as indicated by decreased Fv/FM. The results of photosystem I experiments (in progress) will also be presented.